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The propagation of linearized waves on a non-uniform slowly varying potential current 
is studied by converting the equations of flow into a Schrodinger ordinary differential 
equation in the complex plane. This equation, which is solved by the WKR method, 
indicates the existence of current barriers which allow partial energy transmission 
while reflecting the complementary part. The classical result of total transmission 
(Longuet-Higgins & Stewart 1961) as well as that of complete reflexion (Peregrine 
1976) are recovered as limiting cases by the present, more general approach. 

1. Introduction 
We consider here the problem of water-wave propagation on a non-uniform slowly 

varying current. To simplify matters we limit the study to two-dimensional flows (in 
a vertical plane) in deep water, the current being represented by a potential flow 
beneath the free surface which is uniform a t  infinity. The subject has been reviewed 
comprehensively by Peregrine (1976, 5 11-D) and only a few relevant points of prin- 
ciple are recalled here. 

The classical approach of Longuet-Higgins & Stewart (1961) and Phillips (1966), 
who used the equations of wavenumber and wave-action conservation, yields the well- 
known relationships between wavenumber, wave amplitude and current velocity. 
This approach is valid for all current velocities which are in the same direction as 
that of the wave propagation and for adverse currents with velocity magnitudes 
smaller than that of the critical velocity, which is defined as one-quarter of the in- 
coming wave velocity in still water. The wave energy for a current which is uniform 
a t  infinity is completely transmitted, the incoming and outgoing waves being thus of 
the same wavenumber and amplitude, This property may be restated in terms of the 
work done by the radiation stresses, by observing that it is proportional to the velocity 
gradient and reversible. 

The extension of the classical solution to the case of an adverse current of magnitude 
larger than the critical value has been carried out by Smith (1976) and Peregrine 
(1976). In  such a case the entire wave energy is reflected by the current barrier, the 
relationship between the wavenumber and amplitude of the incoming and outgoing 
waves being given in Peregrine (1976). Both authors, Peregrine (1 976) by a stream- 
function analysis and Fourier transformation and Smith ( 1976) by multiple-scale 
expansion, which led to  a nonlinear Schrodinger equation, solved the problem locally 
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(in the vicinity of the critical point) and matched their solution to an outer classical 
solution. 

Between these two types of solution there is a gap, namely the regime prevailing 
when the current velocity is close to the critical value, either above or below. One 
would expect intuitively that there should exist a continuous transition from total 
transmission to total reflexion when the current velocity aspproaches the critical value. 
The aim of the present study is to determine precisely the dependence of the degree 
of reflexion upon the current velocity distribution. To achieve this goal we convert 
the mathematical problem into s Schrodinger equation which is valid in the entirejow 
domain and take advantage of the rich literature on asymptotic solutions by WKB 
approximations of such equations (our main reference is Froman & Froman 1965). 
The previous results, of complete transmission (classical approach) and total reflexion, 
are obtained as limiting forms of our solution for a weak subcritical current or a strong 
supercritical current barrier, respectively. I n  essence, the WKB procedure we have 
adopted succeeds in connecting the solution on the left and right sides of the criticai 
points by contour integration in the complex plane even if the critical points of the 
current velocity are outside the flow domain. 

2. Mathematical statement of the problem 
We consider a two-dimensional potential flow of water of infinite depth. Variables 

are made dimensionless with respect to length and time scales h/2n and (h/2ng)4, 
respectively, where A is the wavelength of a harmonic wave propagating in still water 
with the same frequency as the incoming wave. The velocity potential 9 ( x ,  y, t )  (with 
x the horizontal co-ordinate, y the vertical co-ordinate, positive upwards, and t the 
time) is defined in the flow domain - 03 < x: < + 03, - co < y < 7, where y = ~ ( x ,  t )  is 
the free-surface equation. 6 satisfies the Laplace equation 

9xz + d,, = 0 (Y < 7) (1)  

(2) 

in the flow domain and the boundary condition 

At + 2dz dtx + 29v dt, + 5% dxx + 24z dl4 dz, + 4; 9,, +A = 0 (Y = 7). 

7 is related to q5 by the Bernoulli equation 

7 = - + i(6: + d;) +constant] (y = 71, (3) 

whereas (2) resiilts from eliminating 7 from (3) and the kinematical free-surface 
condition (see Phillips 1966, p. 23). 

We consider a potential 4 which is the sum of two functions: the potential @ of a 
steady current and an unsteady term originating from a simple harmonic wave 
incident from x -f - 00. The general problem is now simplified by making the following 
assumptions. 

(i) The incoming wave is of small amplitude, i.e. a! = 2na/h = o( l ) ,  where a is the 
amplitude of the incoming wave. This leads to the following linearized approximations: 

(4) 

(5) 

d(x, y, t )  = @(x, y) + a[qVW)(z, y) e-jt + $“*(x, y) elt]  + O(a2), 

~ ( x ,  t )  = N ( z )  + a![q(W)(x) e-jt + 7 ( ~ ) *  eitl J + o(a2) 9 
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wherej is the complex unitt and an asterisk denotes a complex conjugate. Substitution 
of (4) and (5) into (1)-(3) and asymptotic and Taylor expansions yield the exact 
equations of steady flow a t  O(ao) and the linearized wave equations a t  O(a).  These 
are the only orders considered here and the corresponding equations are derived next. 

(ii) The steady current is characterized by a length scale L such that the velocity 
components U = Qx and V = Qu are functions of the slow variables 

2 = x / y ,  y" = Y / Y ,  (6) 

where y = L/(h/27r) $ 1. This representation expresses the assumption that the steady 
current is slowly varying with respect t o  the wave train. To simplify the problem of 
the steady motion further, without much loss of generality for wave propagation, we 
should assume that U = O(i)  and N = O(l) ,  i.e. that the velocity and free-surface 
elevation are of the order of thewave speed and length, respectively. Hence U, = y-lU2, 
N; = y-lNZ, ... are small quantities O(y-') and substitution in the exact equation 
satisfied by the steady flow, 

U2Uu,+2UVU,+ V 2 G +  V = 0 (y = N ) ,  ( 7 )  

yields on the free surface 

By the same token, we obtain from (3) 

v = - y -  1U2UZ + 0(y-3) .  

where the constant in (3) is taken to be zero so that N = 0 for U = 0 (still water). 
This ordering is equivalent to that which would be obtained by assuming that the 
steady current is a small Froude number flow. Indeed, defining Fr in terms of the 
horizontal velocity gives Fr = Uy-4 = O(y-4). 

(iii) With U and N given, the wave potential $(w) satisfies the Laplace equation 

7(w) = j$(w) - u $z (20) +O(y-l)  (Y = N ) .  

a,  qYw) + a,  $LU') + a2 $hw) + a,, &;' + a,, $2) = 0 (Y = N ) .  

(11) 

q5(w) also satisfies the following linearized boundary condition : 

(12) 

The coefficients in (12) depend on the steady current velocity field and have the 
following expressions in 2 and y" a t  O( y- l )  : 

(12a) } 
a 0 -  - - 1 -jy-lU;, 
a2 = 1 + 2jy-lU2U;; 

a ,  = - 2jU + 3y-'UU,, 

a,, = U2, aI2 = - 2y-lU3U;. 

In conclusion, the mathematical problem is defined by (10) and (12), it being 
assumed that the steady current velocity field is given and that $(w) satisfies appropriate 
conditions at infinity. 

in the (d, 8) plane introduced in 3 3. 
t It is necessary to distinguish the complex unit j = J( - I )  here from the complex unit i 
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3. Formulation of the problem in terms of ordinary differential equations 
There are two difficulties associated with the free-surface condition (12): the 

coefficients are variable and the upper boundary y = N is not horizontal. However, 
we seek an asymptotic solution of (b(w) for large y and such a solution can be obtained 
explicitly. We shall make a few preparatory transformations to achieve this aim. 

(i) Equation (10) and the boundary condition (12) are rewritten in terms of new 
variables X and Y which map conformally the plane 2 = 2 + iy" = y-1.z onto the plane 
2 = xi- iF = y-12 such that the free surface of the current (9) is mapped on d = 0: 

(ii) Assuming the steady current potential to be regular (or at worst with a singularity 
at depth P = O( 1) as implied by the length scale of the current) and solving a Dirichlet 
problem in the lower half 2 plane, a second-order linear differential equation for the 
new dependent variable F(2) is obtained: 

Fzg+yBFg+y2CF = 0, (14) 

(14a) 
where B = i( 1 + 29)  (1 + y-lR)/Q2 + 2y-'Q'/Q, 

c = -(1+2y- lB)/Q2 + iy-lQ'/Q2 

and Q and R are analytical functions of 2 given by 

Q(Z) = a[W(Z)+ W*(Z*)] ,  W(Z) = U - i V ,  (15n) 

R(Z) = yRe{z",-- l} = - - dr + iQQ', 
and Q' = dQ/dg. 

In  order to recover the wave potential #w) from F ,  one has to replace the complex 
unit i by j in F and then identify #W) with the complex conjugate of F. 

The reader interested in the mathematical details of the aforementioned steps is 
referred to the appendix. Our last step is to transform (14) into the standard WKB 
eauation. With 

G 
2Q 

(1 + 29) (1 + y-*R) 
2Q2 

F(Z) = G(Z)exp[-(y/2)IBdZ] = - exp [ -iy/ 
equation (14) becomes the one-dimensional Schrodinger equation 

where 

Gzg+q2(&)G = 0, 

q2(@ = y2( 1 + 4Q) (1 + 2y-'R)/4Q4. 
Summarizing this section, the problem of propagation of waves of small amplitude 

on a slowly varying, low Froude number current, formulated initially with the aid of 
(10) and (12), is now expressed with the aid of (17) in the transformed lower half-plane 
(g, F). The coefficient @/y2 in (17), which is real for F = 0, contains terms up to 
O( y-l) and to the order of accuracy of the mapping (13), 

Q(X, 0) = U ( S ,  0) = U(S ,  Y-~N)  + O(y-') 

is the horizontal velocity of the steady current on the free surface. (17) defines the 
wave problem globa.lly, along the entire X axis, and an asymptotic solution for large 
y in a strip -e < P < 0, e = O(y-l) is sought. The advantage of the present formula- 
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FIGURE I. Current velocity distributions for : -, supercritical 
barrier; ---, subcritical barrier. 

tion stems from the possibility of employing the ready-made results of the well-known 
WKB analysis. An equation similar to (17) has been obtained by Smith (1976). 
Smith's representation is broader in the sense that it includes wave non-linearities as 
well as certain unsteady current terms. The validity of his Schrodinger equation is 
limited, however, to the neighbourhood of a strong supercritical current barrier, only. 

4. Current barriers 
In  this section we will examine adverse currents, i.e. U(x,N) < 0 everywhere, 

without imposing the classical limitation U > - 0-25. 
The neighbourhood of U ( z ,  N )  = - 0.25 [ U ( a ,  0) = - 0.251 corresponds to the 

'potential barrier ' of the Schrodinger equation, and we adopt a similar nomenclature 
here. We consider the two velocity distributions depicted in figure 1. I n  the case 
U < - 0.25 (curve a of figure 1) we refer to a supercritical barrier (overdense barrier 
for Schrodinger equation) whereas case b,  in which U approaches the critical value from 
above (U = - 0-25 + E ,  E > 0 and E = o( I)) ,  is called the subcritical barrier (underdense 
barrier, respectively). The detailed mathematical treatment for both cases may be 
found in Froman & Froman (1965, chap. 9), and only their final results are given here. 

(i) Supercritical barrier 
In  the case of the supercritical barrier (curve a, figure 1) the general solution of (17) 
is given by 

where gl, g, are the WKB solutions 
G = ClSl(Z) +CZSZ(Z), (18) 

S(Z) = q(7)d7. (20) s" 
The coefficients cl, c, in (18) are functions of Z and the lower limit of the integral 

(20) is at the left-side turning point (p, O ) ,  (figure 1).  Far on the left, from the barrier, 
g1 corresponds to a wave with a wavenumber k, and g, to a wave with wavenumber K,, 

k, = 4/11 +(1+4U(x,N))4]2,  K l  = 4 / [1 - ( l+4U(x ,N) )4 l2 .  (21a, b )  
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Far to the right the opposite is true (this is a result of the definition of q* along the 
real axis, see Froman & Froman (1965), chap. 6). Both wave trains (kl and Kl) pro- 
pagate to the right, and so does the energy flux (or wave action flux) of the k, wave. 
On the other hand, the energy flux of the K, wave, for adverse currents, points to the 
left, i.e. in a direction opposite to the wave celerity, see Peregrine (1976).? 

Let us assume that the incoming wave is of type k, such that cl( - 00, 0) = 1. The 
radiation condition does not allow energy inflow from x+ + co, so that cl( + co, 0) = 0. 
From these two conditions we obtain, as in Froman & Froman [1965, chap. 9, equa- 
tions (9.13), (9.15), (9.17)$] far from the turning points 

If the two turning points (a', 0) and (8", 0) are separated, x"-x' = O(l) ,  we also 
have between the turning points 

The quantities T,  and R, are given by 

When 2" --x' = O ( l ) ,  K ,  9 1, and consequently T, N- 0, R, ZE 1 which corresponds to 
the case of a strong supercritical barrier, discussed by Smith (1976). 

From (22a, b ) ,  (16), (11)  and ( 5 )  we have for the free-surface 

1 - UK1 cos [ /z~X,dx-- t+n/2]  (x < x', y = N ) ,  (24a)  
1 1 + 4 u p  

+ GR, 

7 = - U z / 2  + GT, 1 1 + 4 u l t c o s [ ~ ~ ~ k l d x - ~ ]  1 - Uk1 (x > x", y = N ) .  (24b) 

The constant Cis determined by the amplitude of the incoming wave (a) throughout 
the relationship 

C = all +4Uml'/[l-umk,(Um)], ( 2 5 )  

where Um is the current velocity at infinity (see A 2). 

t The two additional wavenumbers mentioned by Peregrine are those connected with equation 
(A 1 l) ,  i.e. with incoming waves from x = 00 which we disregard for physical reasoning. Indeed, 
the radiation condition allows no energy flux from 1x1 + 00, except that of the incoming wave k,. 

1 It is pointed out that an error has crept in equation (9.17), namely the expression appearing 
in the second line should be multiplied by - i .  
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FIQURE 2. Reflexion (22,) and transmission (T,) coefficients 

for a parabolic barrier. 

(ii) Subcritical barrier 
In the case of a subcritical barrier, the solution far from the barrier is the same as before, 
i.e. (24a) is valid for x < x’“ and (24b) for x > x’” with the lower limit of the integrals 
at an arbitrary point on the real axis. Equations (23a, b )  are also valid and only ( 2 3 c )  
is replaced by 

- 2 ~ 2 ( a ” ’  + i P )  d P  < 0. (26) s Kc = - y  E7- [ 1 + 4 Q ( ~ ” + i P ) ] ~  

The points (a”’ - iP” ,  a’/’+ ZP”) are the roots of the equation Q ( 2 )  = - 0.25, being 
assumed that, in the neighbourhood of the saddle ( p , O ) ,  Q has the expansion 
Q( 2) = Q(p) + Q,,ia”’). (2 - 8”)2/2 + . . .) with &as(X”’) > 0. 

Because of the negative sign of Kc and because y $1, the coefficient R, = O(exp (K,))  
is generally very small and T, 2: 1, so that the classical solution (Phillips 1966, p. 56) 
is obtained. If p“I < 1,  however, e.g. P“ = O(y-I),  and the current approaches the 
critical value, the result is essentially different: when the two points for which 
Q = - 0.25 collapse on the real axis R, = T, = I /  J2 and the same result is obtained 
for a supercritical barrier at the limit 2” -a’ -+ 0. 

(iii) Illustration 
To illustrate the results let us consider an adverse current with a parabolic velocity 
distribution near the critical point 

Q = -(0.25+Z)+(2---m,,)2, (27) 

where for 2 = Xm,, the strength of the current is the largest and the constant 1 = o( 1)  
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might be positive or negative, for supercritical or subcritical barriers, respectively. 
According to (23c )  and also ( 2 6 )  we have 

R, = nyZ/(0.25 + Z)# M 8n$. (28)  
The relationship between T,, R, and yl based on ( 2 8 )  and ( 2 3 a ) b )  is represented 

graphically in figure 2. The transition from the classical solution (R,-+O, q+ I ) ,  
Longuet-Higgins & Stewart (1961) or Phillips (1966))  towards the strong super- 
critical case with 13”-x’ = O(1) ( T , - + O ,  R,+1), Smith (1976) or Peregrine (1976),  is 
clearly illustrated. 

(iv) Energy balance 
The wave action flux through a vertical plane is given, as shown by Peregrine (1976),  

(29 )  e = - ( U + c g ) ,  

where a, CT and cg are the amplitude, frequency and deep water group velocity as seen 
by an observer moving with the current, respectively. Using ( 2 4 a ,  b ) ,  the well-known 
Doppler condition, (21a ,  b )  and (29 )  the fluxes el and e,, far to the left of the barrier 
and far to the right, are as follows: 

wit’h C given by (25) .  

tion 

It is also seen that T,  and R, can be regarded as coefficients of energy transmission and 
reflexion, respectively. 

Hence, the two curves of figure 2,  interdependent through (31 ) ,  give a picture of the 
amount of energy reflected by a current barrier. It is worthwhile to emphasize again 
that energy is reflected by the R, waves. 

P. 40, by 
a2 

2 a  

e, = tC2( 1 -RE); e, = $C2T,2 (30% b )  

Using (23a ,  b )  it is seen that e, and e, obey the requirement of wave action conserva- 

e, - e, = $C2[1 - (RE + T:)] = 0. (31 )  

5. Summary and discussion 
The present study shows by analytical means that the energy of waves which 

encounter a barrier of an adverse current may be partially transmitted while the 
remaining amount is reflected by waves of type R,. If, however, the slope of the in- 
coming wave exceeds a certain value, the slope growth near the barrier may cause the 
wave breaking and part of the energy is dissipated (as was shown by Peregrine (1976) 
for the case of a strong supercritical barrier). 

To grasp the physical implications of the results we shall recall the three typical 
cases : 

(if Xupercritical barrier with tofu$ rejexion. It might be instructive to compare the 
current barrier with a vertical wall reflecting a monochromatic wave in still water. In  
both cases, the wave energy is totally reflected but there is a profound difference 
between the two mechanisms. The wall reflects a wave of same wavenumber and 
amplitude as the incoming k, wave, resulting in a standing wave of twice the amplitude. 
If the flow is extended to infinity beyond the wall, a discontinuity in the wavenumber 
is introduced to represent the effect of the wall. A current barrier reflects energy by a 
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K ,  wave which is the only one which ensures a continuous transition from the k,  
incoming wave to a wave carrying energy to the left. In fact, the amplitude and wave- 
number of the K ,  wave far from the barrier could be found easily, in the frame of the 
present linear analysis, from the dispersion equation and energy flux balance, 
respectively. 

(ii) Subcritical barrier with weak reflexion. At the other extreme, a weak subcritical 
barrier causes negligible reflexion and wave propagation may be analysed with the 
aid of the classical radiation-stress concept of Longuet-Higgins & Stewart (1961). 
Still, if the current distribution regarded on the free-surface as the real part of an 
analytical function, has a saddle point behaviour, there is an exponentially weak 
reflexion of the wave energy. This type of reflexion is similar to that considered by 
Meyer (1975) for the simple case of the solution of the one-dimensional wave equation 
with a variable phase velocity. 

(iii) Near critical barrier with partial rejlexion. This is preciseJy the intermediate case 
analysed here for the first time. Unlike (i) and (ii) a quantitative evaluation of the 
reflexion or transmission coefficient is not possible simply by applying wave action 
conservation far from the barrier, but requires analysis along the entire free-surface. 

The present work is part of a thesis by M. Stiassnie submitted to the Department 
of Applied Mathematics, Technion, in partial fulfilment of the requirements for a 
Doctor of Science degree. 

Appendix 
The steps (i) and (ii) of $ 3  which lead from ( l o ) ,  (12) to ( 1 4 )  are given here in detail. 
(i) The flow domain of the steady current is mapped conformally onto a half-plane. 

A 'slow' new vertical variable P is defined by 

P = g+ +y-lU2(0, y-1N) 4-O(y-2) 

B = g+ y-1/72(2, 0)/2. 

(A 1 )  
such that for y" = y- lN,  P = 0 [see (S)]. But U(0 ,y - lN)  = U(Z,O)+O(y-l)  so that at  
the same order, (A 1 )  can be rewritten as 

The mapping = a+ i P is therefore given by ( 1  3 ) .  
At infinity we have 

U, = lim U(0 ,  y-1N) and N, = --ill%. (A 2) 

(A 3) 

I;l-tm 

Keeping the same symbols in the transformed planes 

U ( X ,  P) = U ( 0 ,  8); V ( X ,  P) 3 V(2,  g); p q x ,  Y )  = p y x ,  y), 
we observe that Uz = U x  + O(y-l). Hence, the coefficients a,,, a,, . . . in (12a)  can be 
rewritten at once at  same order with the aid of the new variables by just replacing 
Uz by U z .  Furthermore, regarding the analytical functions & ( Z )  and R(Z)  (see (15a, 
b ) ) ,  we have &(x, 0) = U ( a ,  0) and 

R(X,O) = : P v S m  23 d7, 
7T -.w7-x 

where PV stands for the principal value. 
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By chain differentiation and by using (13)) (A 2 ) ,  (A 3) and (15a, b )  the free-surface 
condition ( 1 2 )  is now rewritten with the aid of the new variables as follows, 

(AC + j A f )  $(W'+ (A? + j A f )  $2) + AF $$+') + A$ $g& = 0 ( Y = 0). (A 4) 

The coefficients A?, A:, ..., A,R, are real on Y = 0 and they are given a t  O(y-1) by 

AF= - 1 ;  A f = - y - l Q ' ;  A?= 2y-1QQ'; A f = - 2 Q ( l - y - ' R ) ;  
A,R = I - y-lR; AE = Q 2 (  I - 2y-'R). } ( A 4 4  

(ii) We express now the potential qSW) with the aid of analytical functions of Z by 
defining 

where FR and FJ are holomorphic in the lower Z half-plane and Re, stands for real part 
with respect to complex variables in i .  The free-surface condition (A 4) generates 
two equations for FR and FJ as follows: 

$(w) = QR+jQJ;  (DR = Re,{FR(Z)}; QJ = Re,{FJ(Z)}, (A 5 )  

Rei(ql> = 0; Rei(q,)  = 0 ( Y  = O ) ,  (A 6% b )  

(A 7 )  

(A 7 b )  

q1 = A$ F R -  A: FJ + (A?+ i ~ f )  F , R -  A [  F; + A,R, F $ ~ ,  

q2 = A? F J +  A: FR+ (A?+ iAF) F;+ A [  F,R+ A,R, F i z .  

If the coeficients A f ,  A t ,  . . . , A,R, are holomorphic, q1 and q2 are also holomorphic 
for Y < 0 and (A 6a, b )  give a t  once 

ql(Z) = 0; q2(Z)  = 0 ( Y  < 0). (A 8a,  b )  

Generally, the potential of the steady current is singular and so are the coefficients 
(A 4a) .  But the singularity is a t  a depth P = O( I), as implied by our basic assumption 
regarding the length-scale of the current. It can be shown (Stiassnie 1977) ,  that  such 
singularities would introduce terms O(e-7) in the right-hand side of (A 8a, b )  which 
are negligible a t  the order considered here. We adopt (A 8a, b ) ,  therefore, as identities 
valid in any case and eliminate FR and FJ from (A 8a,  b )  by defining the new functions 

F = + ( F R - i F J ) ;  9 = +(FR+iFJ) .  (A 9) 

(A 10) 

(A 1 1 )  

Equations (A 8a,  b)  now become, in terms of the 'slow' variable 2, 
Fgg + yRFz + y2CF = 0, 

922 + y.G2?9z + y w 9  = 0) 

with R and C given in (14u), and 

a = i( 1 - 2Q)  ( I  + 
%= - ( 1 + 2 y -  lR)/Q2 - iy-lQ'/Q2. 

+ 2y-lQ'/Q, (A l l a )  

At this point i t  is emphasized that the separation of (A 8a, b )  into the two equations 
(A 10) and (A 1 1 )  would have not been possible if terms O(e-Y) were present in the 
right-hand side of (A 8a ,  b )  (a detailed discussion is given in Stiassnie 1977). 

Furthermore, the equations (A 10) and (A 11)  pertain to  two distinct cases: equation 
(A 10) for F together with the condition 9 E 0 is related to  waves incoming from the 
left ( S - + - c r c ) ;  whereas (A 11) for 9 with the condition F = 0 represents waves 
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incoming from the right (X-tm).  It is enough, therefore, to solve one of the two 
equations (A I@), (A 11) for the case of a one-sided incoming wave from infinity and 
this is precisely the aim of the present study. We take, therefore, F = 0, and con- 
centrate on solving (A 10) which is identical to (14). 
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